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Abstract

The present communication is concerned with the control and/or optimization of a two-phase isotropic composite
under time-dependent thermomechanical loadings. A control-like problem and a structural optimization problem are
formulated using a common framework. In both cases the material properties are used as primary design variables and
no a priori assumptions are made regarding the spatial distribution of each phase. For optimal control problems, the
objective is to minimize the difference between field variables and target fields and for structural optimization problems
the objective is to minimize the product of conjugate thermodynamical variables. Within this context, it is shown that
for the minimum structural compliance problem, the optimal distribution of material properties depends on the loading
history, even though the deformations are elastic. For a simplified thermal barrier design, it is shown that the problem
requires simultaneous control of stresses and thermal energy via a multi-objective formulation. © 2002 Published by
Elsevier Science Ltd.
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1. Introduction

The efficient use of non-homogeneous composite materials for mechanical and/or thermal applications
has been one of the main thrusts behind the development of functionally graded materials (FGMs). Though
many examples of such composites date back to the early developments of metallurgy, the systematic
analysis within a conceptually unified framework is relatively new. The monograph of Suresh and Mor-
tensen (1998) summarizes some of the most relevant research in the field in the last decade. Nonetheless,
since this is a multi-disciplinary field, a considerable body of research related to FGMs cannot be covered in
a single book.

The concept of a FGM is invariably tied to an optimization problem. In particular, in order to justify the
FGM, one or more qualities of the non-homogeneous composite have to be better compared to a reference
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homogeneous composite. In this regard, the concept of (material) topology optimization is particularly
suitable for designing FGMs. The monographs of Bendsege (1995) and Cherkaev (1999) summarize the
mathematical and computational aspects of optimization of material properties.

Related to optimization, the theory of optimal control can also be used for designing FGMs. How-
ever, as opposed to the classical framework of control—in which the external loading is viewed as the
control variable—the material properties are used as design variables for FGMs whereas the loading is
assumed to be known (and not controllable). Consequently, optimal control using variable material
properties is a non-linear problem, even if the governing equations are linear with respect to the field
variables.

In the present communication, a design methodology that combines elements from topology opti-
mization and optimal control is used to design optimal FGMs. Optimal control is incorporated in
the formulation in order to model quasi-static and transient behavior, which, as shown in subse-
quent examples, play an important role in the optimization procedure. The time-dependent loading
is important in situations where the design has to accommodate varying external conditions, which is
the norm rather than the exception in practical applications. In particular, many structural elements
are subjected to cyclic loading rather than static. Although the material properties themselves are as-
sumed to be time independent, their optimization has to take into account time-dependent condi-
tions.

To analyze control-like problems and structural optimization problems simultaneously, a relatively
general objective functional is used. As shown below, the difference between these two formulations de-
pends on specific weighting functions used. In both cases the material properties are viewed as variables and
the terms “control” and ‘““design” are used interchangeably.

The region Q where the FGM will be specified is not limited to a graded interface and in general can be
any simply connected three-dimensional domain. It is worth mentioning that a formulation of this type can
simultaneously handle a design in which one of the materials is intended for thermal insulation whereas the
other is used for mechanical performance. The advantage is that there is no need to specify an a priori
location of each material. Rather, the procedure automatically chooses the optimal location of each con-
stituent and mixtures of them.

The present analysis is carried out with the following assumptions: the composite being designed is
assumed to be a two phase, macroscopically isotropic, constitutively linear thermoelastic material. Fur-
thermore, the two materials are assumed to have a relatively low contrast, i.e, the ratio between the largest
property and the lowest property should not be too large. This, however, is not a strong limitation for many
practical applications, but it does exclude the material/void limit case. It is worth pointing out that some
results obtained in the present communication apply to the anisotropic case as well. Nonetheless, the
numerical implementation of the anisotropic case falls beyond the scope of this work. Other assumptions
will be noted as required.

The paper is divided as follows: Section 2 contains preliminary definitions and a general formu-
lation of the problem. In Section 3, the gradient of the objective functional is computed and the
corresponding necessary optimality conditions are developed. A numerical algorithm to solve the opti-
mization problem is summarized in Section 4. Section 5 includes a connection between the purely me-
chanical time-independent minimum compliance problem and the present formulation, where an optimal
reinforcement of a structure is sought for a quasi-static process. Numerical examples of optimal lay-
outs are shown for proportional and non-proportional loadings to illustrate the effect of the loading
history. Section 6 includes a numerical example of a transient thermoelastic process for a simplified
thermal barrier, where the stresses are to be controlled and the thermal component is to be optimized.
It is shown that a multi-objective formulation involving both stresses and thermal energy is required
in order to obtain a “compromise” solution. Finally, some closing remarks are included in Sec-
tion 7.
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2. Formulation of the problem

Preliminaries. Consider a simply connected regular domain Q with boundary 0Q. On the boundary, there
are mechanical and thermal loads prescribed as follows: traction on 9€;, displacement on 0Q,, heat flux on
0Q, and convection on 99,. Inside the domain © there is an linearly elastic, heat-conducting two-phase
FGM. Suppose that the effective material properties can be described as functions of the volume fraction
o = w(x) of one the phases in a representative volume element centered at a point x. The thermome-
chanical material is characterized by an (effective) Helmholtz potential

1 1
lﬁ(e,@):ZG-CG—EM-G(H—&)—c@log@/@r, (1)

where € is the strain tensor, 6 the temperature, C = C(w(x)) is the elasticity tensor, M = M(w(x)) the
thermoelastic tensor (or stress-temperature tensor), 8, a reference temperature, p = p(w(x)) the mass
density and ¢ = ¢(w(x)) is the specific heat at constant deformation. The strain is related to the dis-
placement field u as follows: € = (1/2)(Vu + Vu'). The constitutive relations are

6 = p0y/0e = Ce — M (0 —6,), 1761///60%M-6+c<10gg+1), (2)

where o is the stress tensor and # is the entropy. Additionally, it is assumed that the material follows
Fourier’s law for heat conduction, i.e.,

q=KV0, 3)

where ¢ is the heat flux vector and K the thermal conductivity tensor (Remark: for consistency, the heat flux
is defined here using the same sign convention as for stresses). In this analysis only isotropic phases and
isotropic FGMs are considered, however, from the point of view of notation, it is simpler to consider a
general elasticity tensor C. Introduce the following fourth-order tensors: H = (1/3)I ® I, J =1 — H, where
Iand I are the second and fourth-order (symmetric) identity tensors respectively. For the isotropic case, one
has

C=¢eH+eyJd, D:eg1H+e;1J, e, =3k, e=2u, M=ml, m=e,, K=FKI,

where D = C! is the compliance tensor, e, and e, are the distinct eigenvalues of C, x is the bulk modulus, u
the shear modulus, « is the coefficient of thermal expansion and k is the conductivity. For design purposes,
suppose that one disposes of two homogeneous, isotropic, linear thermoelastic materials (i = 1, 2) with
respective properties k;, u;, o;, k;, mass densities p; and specific heats at constant deformation c;.

In the present analysis, all properties of a FGM occupying the region Q are macroscopically isotropic
and given in terms of functions &, &, &, K, ¢ and p, which themselves depend on w = w(x) (the volume
fraction of material 1 in a representative volume element). Fields and properties can be viewed as functions
of time and position as well as functions of volume fraction. To avoid additional notation the functions and
their values are denoted by the same letter whenever the meaning is clear by the context.

FGM model. Since the main purpose of the present communication is the optimization procedure, a
relatively simple scheme is used to estimate effective properties. In particular, it is assumed that the isotropic
effective properties are given as the average between the Hashin—Shtrikman—Walpole upper and lower
bounds (Hashin and Shtrikman, 1963), which can provide a good approximation for two-phase composites
of moderate contrast and are automatically consistent with the bounds. The model is based on the as-
sumption that effective material properties can indeed be computed based only on knowledge of the volume
fraction w. Furthermore, it is assumed that length scales are well separated and that second order effects
due to spatially varying volume fractions are negligible (see Drugan and Willis (1996) for non-local effects).
Non-dimensional quantities and the model used in the present analysis are included in Appendix A.
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Henceforth, the volume fraction of material 1 (i.e., w) is referred to as the design variable. The type of
FGM considered in this analysis is, for example, a ceramic-metal composite with continuously varying
volume fraction. A restriction on the admissible functions w is that they have to be continuous functions
of x.

State equations. For a given field w, the displacement and temperature fields are interpreted as implicit
Sunctions of the material properties (i.e., # = u(w) and 6 = 6(w)) since they correspond to the solution to the
following uncoupled, quasi-static thermoelastic process:

dive(x,1) =0 in Q x (0,7],
o(x,t)n = t(x,1) on 09, x (0, 7],
u(x,t) = u(x,t) on 0Q, x (0, T],

(P)] divg(x,t) = p(x)c(x)0(x, 1) in Q x (0,7],
q(x,t)-n=g(x,¢ on 0Q, x (0, T7,
q(x,t) -n=h(0"(x,t) — 0(x,¢)) on 0Q, x (0, 7],
0(x,0) = 6°(x) in Q,

where ¢ and ¢ are given by (2) and (3), the material properties are described in Appendix A, n is the normal
outward unit vector to the boundary 0Q, ¢, &, ¢ and 6° are given functions, 6 is a known ambient tem-
perature field and the film coefficient / is assumed to be constant (in particular, it does not depend on ).
To avoid using different symbols, the same letters are used to designate the fields when viewed as functions
of position and time (for a fixed w) as well as when they are interpreted as implicit functions of  (i.e., for
each w there are different fields that satisfy (P)). The spatial gradient and time derivative of the temperature
are always interpreted for fixed w. The notation £, corresponds to the gradient of a field f interpreted as a
function of w (i.e., it measures changes in the field when different distributions of material properties are
considered). The notation := is used for definitions.

Objective functional. To analyze all problems in a unified way, an objective functional J is introduced as

follows:
f_g/ / ) - (6 — &)dvdt + é/ / )’ dvdt. (4)

The prescribed functions & and 6 correspond to a target evolution of the stress and temperature fields re-
spectively (6 is assumed to be symmetric).

The functions A and B are explicit functions of the volume fraction. Several possibilities can be con-
sidered for each function, in particular:

1. Control. For problems where the objective is to control the stress and temperature fields, then A can be
chosen as the fourth-order identity tensor (A = I) and B can be chosen as unity (B = 1).

2. Optimization. For problems where the objective is to minimize or maximize the energy, then A can be
chosen as the compliance (fourth order) tensor (A =D) with 6 =0 and B can be chosen as
B = pc/0;, with 0 = 0. In this case, (1/2)As - ¢ is the stress energy and (1/2)B0” is a first-order approx-
imation of the (negative) purely thermal term in the Helmholtz potential (1) for small temperature ex-
cursions about 6,. Henceforth this term is referred to as the “thermal energy” and it can be
interpreted as the product of conjugate thermodynamical variables (1/2)pn0 for processes at constant
deformation (similar to the stress energy (1/2)e - €).

3. Optimization and control. For problems where the objective is to minimize or maximize one component
of the energy while controlling another field, then one can choose A = D and B = 1 to optimize the stress
energy and to control the temperature or one can choose A =1 and B = pc/0, to optimize the thermal
energy and to control stresses.
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Two cases are considered in the present communication. The first one is an isothermal minimum
compliance problem where the objective is to maximize the stress energy. The second one is the problem of
designing a thermal barrier, where the objective is to minimize the thermal energy while controlling the
stresses. An example of a control-like problem can be found in Turteltaub (2002). More generally, using
weighting factors that depend explicitly on the volume fraction of one material (at a specific location) can
be useful, e.g., if a stress or temperature difference in a design is more critical for one of the materials than
for the other.

In the definition of J, the quantities ¢* and &' are scalar factors chosen depending on the relative im-
portance attached to each individual objective (e.g., if stress control is more important, then & > &).
Moreover, the sign of & and ¢' indicate whether the corresponding term is to be minimized (positive) or
maximized (negative). The interval [0, 7] can be thought of as representing a cyclic loading, but otherwise it
is considered to be a given design parameter.

The values of the volume fraction w are constrained to lie in the interval [w,,, wy], with 0 < w,, < vy, < 1.
In the examples shown in subsequent sections, the ‘““box constraints™ are chosen as w, = 0 and w,, = 1.
Nonetheless, if a given manufacturing procedure is limited e.g. by the maximum local volume fraction of
one material, then one can take w;, < 1.

To avoid trivial solutions, a global constraint on  is enforced (the so-called resource constraint). The
integral of w over the design domain is assumed to lie below some value R, which is chosen from the outset,
ie.,

/Q odo<R. (5)

In this case, the value R (such that 0 < R < vol(Q)) serves to bound the total amount of material 1 used.
Formulation of the problem. Define the design space .o/ as

o = {ww continuous in Q, w, <w<wy, /wdng}.
Q

The objective functional J given by (4) is seen as a function of w(x) only since the temperature field can be
obtained from (P). With this interpretation, the optimization problem can be expressed as follows:

0) Find wy € .o/ such that
Jwo] < J[w] Yo € o.

3. Gradient and first-order optimality conditions

Due to the transient behavior and the boundary conditions considered here, the governing equations are
not necessarily self-adjoint, in which case the gradient of the objective functional has to be computed
solving adjoint problem(s) (see Tortorelli and Haber (1989) and Dems and Mréz (1998)). In order to
compute the gradient of the objective functional with respect to the design function w(x), first augment J
with the constraints w,, — <0, o — @y <0 and fg wdv — R <0 and introduce the corresponding Lag-
range multipliers 4,,(x) = 0, Ay(x) = 0 and A > 0 as follows:

L[, Ay Mg, A] = T[] _|_/

Q

Im(@, — @)dv + /

Q

iM(a)—wM)dv—i—A(/Qa)dv—R). ()

A direct calculation using (4) and (6) shows that the first variation of L with respect to w is formally given
by
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SL[w, A, Aar, A; 3] = és/ /Ae -dadvdr + ét/ /Be -d0dvdt
0 Q 0 Q

1 T
4_E/ /{gAM.e+g&ﬂ@5wmdrb/G%m+ZM+ARMdm 7
0 Q Q

where
e:=o0—0, e:=0-0 (8)

measure the pointwise differences (errors) between the actual fields and the target fields, and da(x,¢) and
d0(x,t) measure the difference in stress and temperature fields for two different distributions of volume
fraction w; and w, such that w,(x) = w;(x) + dw(x). The subscript w indicates differentiation with respect
to volume fractions, i.e., (-), = 0(-)/0w.

To actually compute the effect of varying a material layout on the performance of the FGM, one has to
solve an adjoint problem with adjoint “constitutive” relations (i.e., the purpose is to compute 6 and 56).
Let u* be a vector-valued function, €* and ¢* tensor-valued functions (assumed to be symmetric) and 6" be a
scalar-valued function defined in Q x [0, 7.

Following the adjoint method, one can identify the adjoint problems that #* and 6" should satisfy, which
are as follows: given a “residual strain” & Ae(x, ) (e is the stress error defined above and £°A is the stress
weighting factor in (4)) and given a ‘“‘source” term r(x,?) = €*(x,1) - M(x,t) + &'Be(x,t) (e is the temper-
ature error defined above and &'B is the thermal weighting factor) find u*(x,¢) and 0°(x,¢) such that

divCe* =0 in Q x (7,0],
e =1(Vu + (Vu)") — &Ae in Q x (T,0],
Cen=0 on 0@, x (T,0],
(P) w=0 ' on 0Q, x (T,0],
div(KVO*) + 0" = —r in Q x (T,0],
KV0 -n=0 on 0Q, x (T,0],
KV0" -n=—ht on 3R, x (T,0],
po*(x,T)=0 in Q.

Problem (P’) is solved from time 7 > 0 to time 0, but it is well-posed since the sign of 8 := pc is positive.
Observe that the ““‘mechanical” problem actually has to be solved first (i.e., in the reversed order compared
to the direct problem (P)). Solving for the adjoint strain provides the source term for the thermal problem.
With this convention, one can show that

T T
fs/ /Ae-So‘dvdt—i—ft/ /BeSdedt
0 Jo 0o Jo

T
:-1/ /(é-K%e—ALAG—&ﬂ+K@VW~V9+ﬁJ?®8wmﬂt
0o Je
In view of (7) and the previous relation, the first variation of L can be written as
BL[w, Ay lar, A; 0] = /L/ dwdu, 9)

Q

where the the gradient of the augmented objective functional L is !

L'=g+f=lw+iu+4, (10)

! Gradient using the topology of square-integrable functions.
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and the functions f (explicit gradient of J) and g (implicit gradient of J) are given by

1 r 1 r
(x) ::—fs/ Awe-edt—i-—f[/ B, é*dt (11)
27 ) 27 Jo

and

T
g(x) == — / {e* ([Coe — Mo (0—0,)] + K, V0 - V0 + ﬁwo*é} dr. (12)
0

For computational purposes, it is useful to express problem (P’) using a different terminology. In particular,
the adjoint mechanical constitutive relation is " = Ce* = C(€},, — £*Ae), where the total adjoint strain is

€, = (1/2)(Vu + (Vu*) ) Observe that the “residual” strain is a function of time but the boundary
condition on 0€; is still expressed as a traction-free surface. Another simplification is achieved by intro-
ducing the adjoint time variable 7 := T — ¢. Using t instead of 7 and f(x,1) := f(x, T — 1) for all functions
in problem (P’), it can be solved from 0 to T (an equivalent formulation can be obtained using convolutions
(see Tortorelli and Haber, 1989)). Hence, problem (P') becomes

dive* =0 in Q x (0,7],
i =Ce & =(&,-che) in Q% (0,7],
éfm:%(Vu (Var) ) ¢:=6-6 in Qx (0,7],
on=0 on 0@, x (0, 7],

(P")q @ =0 ~on 3@, x (0,7,
div (KV0°) + ( & - & Ae) L EBO—6) = 0" in Qx (0,T],
KVQ n=0 on 0Q, x (0,T],
KVO0" -n=—ho on 02, x (0, 7],
ﬁe*(x7 0) =0 in Q.

Optimality conditions. For the optimal distribution of material properties wy, the optimality condition (first-
order Karush-Kuhn-Tucker condition) can be expressed as

ﬂm( — ) <0, Jaa(@o — wy) <0,
A /wdv — R} <0
Q
and
if wy(x) = w, = G(x)+4 =0,
if w, <wy(x) <wy =Gx)+4=0, (13)
if wo(x) = wy = G(x) + 4 <0,

where G := g + f is the gradient of J and g and f are given by (11) and (12). In the previous relations, all
quantities are evaluated using the fields that correspond to the solutions of problems (P) and (P’) with
w = wy.
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4. Numerical implementation

The algorithm used for the solution of problem (O) is summarized in this section. Since the de-
sign problem is non-linear, an iterative scheme is used to find a numerical approximation of the solu-
tion.

Step 1: Suppose that one has an approximation o™ = ™ (x) at iteration n (the method starts with
an arbitrary configuration w® = o (x)). With o, all effective material properties are computed for
all points x using the model for the FGM. Using these effective properties, the transient heat conduction
in (P) is solved. The time-dependent temperature field is then used in the mechanical problem in (P) and
the corresponding stress field is computed. Subsequently, the action of the tensor A on the pointwise
stress error e(x,t) = a(x,t) — &(x,¢) is introduced as a time-dependent residual strain in the mechanical
adjoint problem in (P). The corresponding adjoint strain field €*(x,#) is used in conjunction with the
pointwise temperature error e(x,7) = 0(x,t) — 0(x,¢) as a time-dependent source term for the adjoint
thermal problem in (P’). The direct and adjoint fields are then combined in (11) and (12) to compute g(x)
and f(x).

Step 2: an internal iterative loop is used to determine the Lagrange multipliers 4,,(x), )(x) and A. With
g(x) and f(x) fixed, estimates of 4,,(x) and ,,(x) can be readily obtained from the current values of » (x)
and an arbitrary estimate of A is assumed. All this information is then combined to obtain an estimate of
the gradient L’ given by (10). A line search is performed to obtain a step size > 7. With a temporary estimate
of the new distributions of volume fractions (" (x) = w® (x) — yL'(x), new Lagrange multipliers are
determined such that all constraints are satisfied. The procedure is repeated until the estimate of w1 is
consistent with the constraints, at which point it is accepted.

Step 3:if |J+D — J™| /|J™| is smaller than a prescribed tolerance, then accept ! (x) as the solution,
otherwise set » — n + 1 and repeat steps 1 and 2.

Other aspects of the numerical implementation in the examples shown in the next sections are as follows:
four-noded plane stress piecewise bilinear elements are used for space discretization in plane stress/plane
heat conduction problems. Backward Euler integration is used to solve the transient problems with an
adaptive scheme. The time steps are small for # < 1 in order to capture the higher frequencies. Time steps
are increased as time increases. A trapezoidal rule that takes into account the adaptive scheme is used in the
discrete versions of (11) and (12). A 2 x 2 Gaussian rule is used for all integrals in Q. It is worth pointing
out that the discretized version of the adjoint problem (P') is slightly different than the adjoint of the
discrete version of the direct problem (P). Time discretization and integration by parts do not exactly
commute; essentially there is a time shift of one time step (see e.g. Carthel et al. (1994) for a similar situation
in a boundary control problem).

The field w is approximated using the same basis functions used for the field variables. Thus, w
is discretized as a continuous function and it is important to compute the capacity and stiffness matri-
ces accordingly. Consequently, one cannot take immediate advantage of the systems’ matrices computed
in the previous iteration (which is possible to do if w is discretized as a piecewise constant func-
tion). Nonetheless, a piecewise bilinear approximation is consistent with continuously varying mate-
rial properties. In the fully discrete version, the total number of unknowns w is equal to the total number
of nodes. This numerical algorithm was implemented and several examples are shown in the next sec-
tions.

2 Remark: one can also implement a conjugate gradient method, but for the present thermoelastic problem it is numerically costly
(see Turteltaub, 2002).
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5. The isothermal minimum compliance problem
5.1. Relation between the time-independent problem and the present formulation

As opposed to controls problems (in which a target field is specified and the purpose is to minimize the
error), in optimization of structures a commonly prescribed goal is to minimize its structural compliance,
which, equivalently, corresponds to maximize its structural stiffness (Bendsee, 1995). The structural
compliance, for a structure Q during a quasi-static process from 0 to 7, is defined as

T
J::/ {/&-udu+/i-uda—/ t-ada}dz, (14)
0 Q Qt Qu

where b is a prescribed body force, f is a prescribed traction on part of the boundary, # is a prescribed
displacement on the complementary part of the boundary and u and ¢ are the actual displacement and
traction for the quasi-static process (observe the negative sign for the third term). Hence, from the theorem
of work and energy, J has the following interpretations: if b = # = 0 then J is the time integral of the total
strain energy, if # = 0 then J is the negative of the time integral of the total strain energy. The underlying
idea is that for prescribed tractions and body forces, a stiffer structure minimizes displacements on the
boundary and for prescribed boundary displacements it maximizes the surface tractions.

It is insightful to make a connection between the classical problem of minimum compliance (i.e., time-
independent problem) and the present formulation. To this end, one can consider the isothermal case,
where the temperature is equal to the reference temperature, and assume that, for the mixed problem, either
the prescribed displacements are zero or the prescribed loads are zero. To cast the minimum compliance
problem using the present formulation, one can choose A = D, where D = C™' is the compliance tensor and
set the target function to zero, i.e., ¢ = 0. Under these conditions, the term (1/2)Ae-e = (1/2)Do -6
corresponds to the stress energy density which, provided ¢ = Ce, coincides with the strain energy density
(1/2)Ce - €. If non-zero displacements are prescribed, then the minimum compliance problem is obtained
by setting &, = —1 (maximize stress energy) and if non-zero loads are prescribed then one has to set & = 1
(minimize strain energy). In both cases, a required constraint is to satisfy the displacement-based balance
equations for the quasi-static process.

For the minimum structural compliance problem, the adjoint mechanical problem admits trivial solu-
tions in terms of the direct fields. Under the foregoing assumptions (i.e., 6 = 0, A = D), consider the fol-
lowing two cases: (a) suppose that the prescribed displacements # in the direct problem (P) are zero and
& =1 and (b) suppose that the prescribed tractions # and body forces b in the direct problem (P) are zero
and & = —1. In case (a) and in view of problem (P”), the adjoint elastic strain is zero (e* = 0), the adjoint
stress is zero (¢* = 0), the total adjoint strain is equal to the direct strain (€}, = €) and the adjoint dis-
placement field coincides with the direct displacement field (#* = u). In case (b), the adjoint strain is equal
to the direct strain (e* = €), the adjoint stress is equal to the direct stress (¢* = &), the total adjoint strain is
zero (€, = 0) and the adjoint displacement is zero (u* = 0).

Therefore, for the particular case (a), the first term of the gradient given by (12) is zero. Furthermore,
since CD =1= D, = —DC,D and in view of (11), the gradient of J is

T T
G(X)=g(x)+f(x)=%/0 Dwa-adt:—%/o C,e - edt,

which corresponds to the classical unconstrained gradient in the minimum compliance problem, averaged
in time throughout the quasi-static process (Bendsee, 1995).

For the particular case (b), the first term of the gradient given by (12) is g(x) = — fOT C,e€ - edt. Fur-
thermore, in view of (11) with £ = —1, the gradient of J is
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T T T
G(x):g(x)+f(x):—/ cwe.edt_l/ D(,,a-adt:—l/ Coe-edr,
0 2 0 2 0

Hence, for both cases (a) and (b), the unconstrained gradient has the same expression. However, observe
that if A is not the compliance tensor, then this assertion is not necessarily valid.

In the classical structural optimization problem (static problem), the objective functional is based on the
“final” state, hence it is independent of the loading path for an elastic deformation. However, in the present
formulation, the loading history is taken into account. Thus, for non-proportional loading, the optimization
problem is path dependent, despite the fact that the deformation is elastic. For proportional loading, where
either @(x,t) = o(t)iy(x) and #(x,t) = 0 or #(x,t) = a(t)ty(x) and a(x,¢) = 0, the classical minimum com-
pliance problem and the present formulation are equivalent since, after rescaling the multipliers by a time
constant, the necessary conditions (13) are the same.

5.2. Examples of optimal designs for minimum structural compliance

In what follows, four examples of optimal reinforcement in a structure are presented. The first two
examples correspond to proportional loading (axial and shear) whereas the last two illustrate the effect of
non-proportional loading. Suppose that one has two materials, one referred to as the reinforcement
(material 1, higher principal stiffnesses) and the other as the matrix (material 2, smaller principal stiffnesses).
Normalized quantities are used, as explained in Appendix A, with k,/x; = 0.6 and u,/u; = 0.5. The design
variables are the local volume fractions w = w(x) of material 1 (reinforcement). The body force is assumed
to be zero. A non-zero displacement history is prescribed on part of the boundary while zero traction is
assumed on the rest of the boundary. The goal is to find the maximum structural stiffness. The factor & is
set to —1 to maximize the stress energy and the weighting factor A is the effective compliance of the two-
phase composite.

The loading in each example corresponds to a prescribed displacement boundary conditions that sim-
ulates a simple deformation. A 10 cm x 10 cm square domain is chosen. The process is isothermal and
plane stress conditions are assumed (see Appendix B for the case of plane stress). The left and right sides of
the domain are stress-free. The bottom edge is rigidly clamped and a prescribed displacement history on the
top edge is given. The first case corresponds nominally to an axial deformation and the second case to a
nominal simple shear, where “nominal” in the present context means displacement of top edge relative to
bottom edge. Observe, however, that the deformations are not homogeneous.

To illustrate the path dependency of the optimal layout, two other cases are considered, both corre-
sponding to an axial to simple shear transition. The first transition corresponds to unloading in the axial
direction during half of the time interval and then to simple shear during the second half. The second
transition considered corresponds to a simultaneous axial unloading and simple shear during the total time
interval. Even though the initial and final states are the same for both cases (for the same material dis-
tribution), the optimal layouts, as shown below, are different due to a distinct stress history.

The displacements of the top edge are specified as follows (total time 7 = 10 s):

1. Axial deformation:

Uuj (x, l‘) = 07

us(x,t) = (1 —¢/T) x 1073 m.
2. Simple shear:

{ul(x, t)=(t/T) x 1073 m,
uz(x, t) =0.
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3. Axial deformation followed by simple shear:
up (x, l) = 0,
uy(x,t) = (1 =2t/T) x 107 m,

w (x,8) = 2(t/T — 1/2) x 10~ m,
uz(x, t) = 0.

For 0 <t<T/2 {

ForT/2<t<T {

4. Simultaneous axial and shear deformations:

uy(x,t) = (¢t/T) x 1073 m,
{uz(x,t) =(1—1¢/T)x107° m.

The maximum ‘“‘axial” and “‘shear” deformations are, nominally, 1%. In all cases a normalized value of
R = 0.25 was used (i.e., the reinforcement corresponds to a maximum of 25% of the total volume). A
uniform 30 x 30 mesh was used and the total number of variable time steps ranged between 40 and 70 steps
depending on the problem. As it is often the case with gradient-based methods, the objective functional was
reduced considerably during the first iterations but subsequently a greater number of iterations are required
to resolve fine details in the design.

The optimal distribution of volume fractions of material 1 (reinforcement) are shown in Figs. 1-4 for
cases 1-4 respectively. The prescribed initial and final positions of the top edge are the same for cases 3 and
4. Table 1 summarizes the improvement in structural stiffness for all cases. In particular, the table lists the
improvement with respect to no reinforcement (i.e., pure material 2) and with respect to a uniform rein-
forcement (with the same value of R = 25%).

Volume fraction

09-10 08-09 07-08 06-0.7 05-06

N N I O Iy O

04-05 03-04 02-03 01-02 00-0.1

Fig. 1. Optimal distribution of volume fraction of reinforcement under prescribed axial displacement.
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Volume fraction

09-10 08-09 07-08 06-0.7 05-06

04-05 03-04 02-03 01-02 0.0-0.1

Fig. 2. Optimal distribution of volume fraction of reinforcement under prescribed simple shear.

Discussion: From Table 1 one can observe that the greatest improvement in structural stiffness using a
non-uniform (graded) composite is achieved for a simple shear deformation. In the other cases a more
modest but certainly non-negligible improvement is achieved. In all cases the reinforcement greatly im-
proves the structures’ stiffness compared to the non-reinforced case. For case 1 (axial-like deformation), the
optimal layout is, not surprisingly, roughly a fiber-like reinforcement in the direction of the deformation.
The deviation from a straight line of the fiber-like reinforcement (arched layout) is due to the stress-free
sides. The reinforcement starts at the corners where the stresses are higher. For case 2 (simple shear de-
formation), the optimal reinforcement can be described as a truss-like internal structure with “cross-bars”
rotated 45° with respect to the prescribed displacement, which again is intuitively correct. It is worth noting
that in this case a graded material performs substantially better than a uniform composite. Cases 3 and 4
are more novel. Although the prescribed initial and final positions of the top edge are the same for both
cases, the optimal layout depends on the displacement path. In case 3 (axial followed by simple shear), the
optimal layout can be described as a single, axially oriented central fiber-like reinforcement, with additional
reinforcement in each corner where the stresses reach their peak values. On the other hand, the optimal
layout for case 4 (simultancous axial and simple shear deformation) can be described as two parallel fiber-
like reinforcement oriented at an angle with respect to the axial deformation. Higher reinforcement is used
at the corners where, as in the other cases, the stresses are higher.

To illustrate the difference between the two designs, the computation of the objective functional for case 3
was performed using the optimal design for case 4 and vice versa. The results are summarized in Table 2.
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Volume fraction

09-10 08-09 07-08 06-0.7 05-06

04-05 03-04 02-03 01-02 0.0-0.1

Fig. 3. Optimal distribution of volume fraction of reinforcement under axial displacement followed by simple shear.

Clearly, the optimal layout for case 3 is far from being the optimal for case 4 and vice versa. The relative
improvements shown in Tables 1 and 2, quantify the importance of taking the loading history into account
in order to optimize time-dependent performance.

6. Thermal barrier: multi-objective thermoelastic problem

As a second example, consider a commonly used metal/ceramic FGM system: nickel/alumina (Ni/
Al,O,). Typically, a thin alumina coating is added on the high temperature surface to prevent damage (e.g.,
melting) of the metal component. Often, the coating consists of several layers with different volume frac-
tions. With this application in mind, the foregoing example is a simplified version of a graded nickel/
alumina interface. For simplicity, the formation of a thermally grown oxide layer is not considered and it is
assumed that the residual stresses are zero (in general, the evolution of the microstructure is not considered
in the present analysis). Nonetheless, the examples shown in this section serve to illustrate an important
aspect of the optimization procedure, namely that a single objective is not enough to provide a reasonable
solution. Rather, a multi-objective formulation is required. To illustrate this point, three problems are
considered in this section. For all problems considered, the loading is the same, the differences are in the
objective functionals used.
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Fig. 4. Optimal distribution of volume fraction of reinforcement under simultaneous axial and shear displacements.

Table 1
Relative improvement in structural stiffness J
Nominal deformation Improvement w.r.t. no reinforcement Improvement w.r.t. uniform reinforce-
(Jort —Jmy /I (%o) ment (JOP' — JUr) /J" (%)
1. Axial +65 +8
2. Simple shear +87 +79
3. Axial plus shear +65 +14
4. Axial and shear +68 +16

JoP is computed from (14) for the optimal reinforcement shown in Figs. 1-4; xy/k; = 0.6, u,/p; = 0.5, R = 25%.

Table 2

Relative values of optimal and non-optimal structural stiffness J (computed from (14))
Nominal deformation (Jopt — gmon--opt) / ymon--opt (0/)
3. Axial plus shear +8.5
4. Axial and shear +11.3

The non-optimal in case 3 refers to J computed using layout 4 and, conversely, the non-optimal for case 4 is J computed using
layout 3.
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1. For the first problem, the purpose is to optimize the thermal energy regardless of the stresses. Hence, &° is
set to zero in (4) and B = pc/0,.

2. For the second problem, the idea is to minimize stresses without optimizing the thermal energy. In this
case, the stress weighting factor A is set to identity and &' = 0 in (4).

3. The third problem consists of a multi-objective formulation where the stresses are controlled (minimized)
and the thermal energy is simultaneously optimized.

Suppose that one has a 0.5 cm x 1 cm rectangular solid domain Q. For all examples in this section,
convection is prescribed on the top and bottom sides where heat is exchanged with the environment (e.g.,
air). Zero flux is assumed on the left and right sides. Traction-free conditions are prescribed on the top and
bottom whereas zero displacement is assumed on the left and right sides. The ambient temperature is in-
creased on the top side and left unchanged on the bottom, i.e., the thermal boundary conditions for the top
and bottom sides are

kN0 -n=h(0— 0,

where 0 is the surface temperature and 0°, the sink temperature, varies as
; t ;
edktop — 00 _’_?01’ ed,bottom — 90 for 0<t< T.

The temperature 0° is a constant initial temperature larger than the reference temperature (hence, observe
that initially there are non-uniform thermal stresses). In the foregoing examples, the temperatures are taken
such that 6° — 6, = 100 K and 0' — 6° = 300 K. The process is analyzed for 7 = 10 s.

For all problems, the domain was discretized with a uniform mesh of 30 x 60 (finer meshes showed
convergent results). The optimal layout for problems 1-3 are shown in Figs. 5-7. In these three problems,
the value of the resource constraint (maximum amount of alumina used) is R = 25%. Fig. 8 corresponds to
problem 3 with R = 12.5%. The changes in thermal energy and stresses are summarized in Table 3 where, in
all problems, the initial layout is a pure Ni domain (@® = 0). This initial layout is used as a reference for
measuring changes in the objective functional.

Discussion. For problem 1 (thermal energy optimization, no stress control), the optimal layout consists
of a one-dimensional graded interface ranging from pure alumina on the high-temperature surface to pure
Ni on the lower temperature regions. From top to bottom, the concentration of alumina rapidly decreases
but then changes more slowly towards a pure Ni region. The optimization of the thermal energy identifies
higher temperature regions and specifies alumina in such areas. The resulting profile is a consequence of the
detailed temperature distribution in both space and time. The improvement in thermal energy is about 4.7%
(computed from the second term in (4) and compared to a pure Ni layout). The corresponding overall
increase in stresses (not controlled in this problem) is about 32%.

For problem 2 (stress control, no thermal optimization) the optimal layout is trivially pure Ni, which
corresponds to the initial layout in the iterative numerical computation. Although trivial, the solution to
this problem is in fact a good illustration of several competing factors in the determination of the optimal
layout. Thermal stresses arise due to several factors, namely zero-displacement boundary conditions, non-
uniform distribution of temperatures and non-uniform distribution of material properties (coefficient of
thermal expansion). Furthermore, reduction of thermal stresses can be accomplished via a “‘global”
strategy, a “local” strategy or a combination of both. The term global is used here in the following sense:
the use of alumina as insulation reduces the temperature inside the domain hence, in principle, reduces the
thermal stresses in Ni. In this sense, the benefit of alumina is not felt where the material is, but rather at
different locations. However, the trade-off is that there is a local increase of stresses due to the addition of
alumina: its coefficient of thermoelasticity m = 3xo is higher than nickel’s. Thus, for the same change in
temperature, at a point where the thermal expansion of the material is locally constrained, the resulting
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k grad 0(x,t) - n = h(6(x,t)-6%1P(t))
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Fig. 5. Optimal distribution of volume fraction of alumina fractions for minimum thermal energy (no stress control; total time 7 = 10
s, resource R = 25%).

thermal stresses would be higher for alumina than for nickel. Hence, this indicates that if one would like to
locally reduce stresses, using Ni is preferable. In fact, for problem 2, this is what the computation predicts.
Any addition of alumina results in an increase of thermal stresses and a reduction in temperature is not
enough to offset this effect.

This second example also illustrates a simple but important fact: reduction of stresses in a FGM without
consideration of the value of the temperature might easily lead to unacceptable solutions since the purpose
of the coating is to prevent damage of nickel due to high temperatures. A compromise layout can be
obtained between two opposite requirements: reduce temperature in nickel without increasing thermal
stresses excessively. This formulation corresponds to problem 3, where the thermal energy is optimized and
the stresses are minimized. Since the initial layout is pure Ni, the stresses would invariably increase with any
addition of alumina. In this case they increase about 25%. However, the procedure prevents them from
reaching an even higher value in an unconstrained optimization as in problem 1 (32%). The change in
thermal energy is numerically similar to problem 1, though still slightly smaller. This is due to the actual
material properties (the product § = pc is similar for both Ni and alumina).

The effect of the competing factors on the optimal layout shown in Fig. 7 are particularly evident in the
upper corners: the thermal stresses are higher at the corners due to the constraints (zero displacement) but
the temperature is also higher due to the convection boundary conditions and a higher ambient temper-
ature. This results in a sharper interface, which then becomes more graded farther away from the corners.
This effect is still evident when the maximum amount of alumina used is reduced by half (R = 12.5%), as
shown in Fig. 8.

It is important to note that, due to the nature of the model used, the thermal stresses that occur due to a
mismatch in coefficients of thermal expansion are only measured in an average (macroscopic) sense. In fact,
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Fig. 6. Optimal distribution of volume fraction of alumina for minimum stress (no thermal control; total time 7 = 10 s). The optimal
solution is trivially equal to 0 (pure Ni).
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Fig. 7. Optimal distribution of volume fraction of alumina for minimum thermal energy and minimum stress (resource R = 25%; total
time 7 = 10 s).
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Fig. 8. Optimal distribution of volume fraction of alumina for minimum thermal energy and minimum stress (resource R = 12.5%;
total time 7' = 10 s).

Table 3
Relative changes in J
Objective functional Change in stress w.r.t. no alumina Change in thermal energy w.r.t. no
U = TG (%) alumina (Jg" — J) /g, (%)
1. Thermal optimization only +32 +4.7
2. Stress control only No change No change
3. Multi-objective +25 ~+4.7

JOP! is computed from (14) for the optimal layouts shown in Figs. 5-7; R <25%.

the mismatch effect is typically measured at the same length scale of the thermal stresses due to non-uniform
temperature distributions. Fluctuations of stresses inside a representative element volume are averaged and
the net effect of the mismatch is only measured at a length scale large enough to reflect changes in volume
fraction. In principle, nonetheless, one can compute the effect of inclusions at the RVE level by extending a
formulation like the one proposed by Lipton (2002a) to the thermoelastic case. Such analysis, however, falls
outside the present scope.

7. Closing remarks

As presented in this article, the use of optimal design and optimal control techniques can be used as a
guideline for designing FGMs for average optimization and/or control purposes. The method can be ap-
plied with different material models that are based on first-order microstructural information. Furthermore,
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an important advantage is that the proposed method does not require an a priori parametrization of the
design space (any continuous function is admissible) nor an a priori assumption about the location of
materials (as it is often the case with thermal barrier problems where pure ceramic and pure metal regions
are fixed from the outset (see e.g., Tanaka et al., 1996)).

As illustrated in Section 5, the loading history is important when dealing with time-dependent objective
functions and/or fields. The optimal reinforcement problem is path dependent, even though the defor-
mation is elastic. For thermoelastic problems, as shown in Section 6, it is important to formulate the
problem using a multi-objective functional.

It is worth pointing out that the local error for the minimum stress problem is an average measure in
time at a given point. In particular, this means that it is possible to have two points with the same error,
however one corresponds to high (peak) stress during a short time period and another to a lower stress level
applied for longer time. A more sensible approach to distinguish between such cases is to incorporate a
failure criterion. Since effective properties are used in the model, a homogenized failure criterion recently
proposed by Lipton (2002b) can be incorporated into the formulation of the problem.

In closing, it is worth mentioning that even though current manufacturing techniques might not be able
to reproduce the details of the designs presented here, the proposed numerical method can still be used as a
guideline for design. Furthermore, and perhaps more importantly, the methodology can be used to motivate
the development of new manufacturing techniques for FGMs, in particular if the predicted performance of
a non-homogeneous composite is substantially better than a homogeneous one.
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Appendix A. Isotropic normalized properties, bounds and FGM model

Normalized and non-dimensional quantities. In the present analysis, it is useful to work with non-di-
mensional quantities that can be readily compared since proper scaling is particularly important in the
definition of the objective functional. In this appendix, unless otherwise indicated, an overbar indicates a
dimensional quantity whereas a symbol without an overbar refers to a non-dimensional quantity. In order
to determine a useful scaling, a brief review of the governing equations is helpful.

Assuming no heat source terms, the local balance of energy in a thermoelastic process is

divg = p0,
where 570 :E . é_@ + ﬁE@.;It is assumed that the process analyzed is quasi-static in the following sense:
assume that |M - €0 < |pcl|. For the isotropic case, the assumption is

tre 1

o0 G

where G := mi/p¢ is the Griineisen coefficient. For the materials considered here, the Griineisen coefficient is
of the order of magnitude of 1. If the strain rate is of the order of magnitude of @0, then the previous
assumption will hold if & is small, which is typically the case. Under this assumption, the balance of energy
is uncoupled from the balance of linear momentum.
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One can introduce an arbitrary macroscopic length scale / related to the region Q where the analysis is
performed. Non-dimensional position vectors are defined as x = ¥/I. Furthermore, let kmy = max {k;, k> }
be the largest conductivity of the two design materials and introduce

E = ﬁE and Bmax = max {EhﬁZ}a where Ei = ﬁiaia i= 1a2

A thermal time scale can be defined as follows: 1 = (ﬁmaxf)/ﬁmax. It is assumed that a mechanical time
scale 7y (defined in terms of / and a wave speed) and the thermal time scale satisfy 7y < 71. Clearly, a
smaller thermal time is obtained using B, instead of f8,,,,. However, it is assumed that even if f,;, is used
in the definition 77, the thermal time scale is larger than the mechanical time scale.

It is assumed that mechanical inertial effects and time fluctuations of mechanical quantities are negligible
after time-average in the larger time scale. Since the thermal time scale dominates the quasi-static process, a
non-dimensional time ¢ is defined as ¢:=7/¢r. Furthermore, in view of introducing non-dimensional
equations, it is convenient to normalize the properties. Let

€max = Max {3R17 3R27 Zﬁ] ) 2ﬁ2}a

Omax = max {0, 0 }.
Normalized properties, expressed without an over bar, are defined as
ﬁmax

Dimensionless temperatures and stresses are defined as follows:

e e o k
e =—017 e =—1V oi=—01V ki==—017
€max €max Olmax kmax

B

— 1
0 := Upax0, o :=

—0.

emax
The definition of the non-dimensional temperature is motivated by the previous assumption on strain rates,
which also motivates the definition of the non-dir_lzlensional stress. Prescribed displacements are normalized
by /, tractions by ey, heat fluxes by kmay/(%max/ ) and film coefficients by k. /1.

FGM model. For isotropic conductivity, the Hashin—Shtrikman-Walpole bounds are shown in Fig. 9
(left) for different values of the ratio of normalized conductivites » = k,/k;, where it is assumed that
ky < ky = 1. Fig. 9 (right) shows the maximum difference between the upper and lower bounds as a function
of r. As shown in Fig. 9 (right), the difference between the upper and lower bounds decreases rapidly as a
function of r. The same situation occurs for other properties such as bulk and shear moduli, as shown in
Figs. 10-12. If one assumes that a two-phase FGM is macroscopically isotropic, then for relatively large
values of r, its effective properties can be well approximated by, e.g., the average between the upper and
lower bounds. To illustrate this assertion, consider a Ni/alumina composite. At room temperature, the
properties are shown in Table 4. It is important to observe, however, that these properties depend on the
reference temperature (room temperature in this case). For large temperature excursions, this dependence
needs to be taken into account. However, this falls outside of the scope of the present work.

For the term f§ = pc, it is assumed that it can be approximated by an monotonic expression of the form

B(w) =’ (By — Bo) + Bas (A1)

p being a constant power. Observe that if one uses a simple linear interpolation for the density and the
specific heat and if these properties are not ordered (i.e., (p; — p,)(¢1 — ©») <0) then the product f is not a
monotonic function of volume fraction. Such case is not considered here.
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Normalized conductivity, k1=1, r=ko/kq
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Fig. 9. Left: upper and lower Hashin—Shtrikman—Walpole bounds of normalized conductivity as a function of volume fraction  for
various values of r = k, /k;. Right: maximum difference between upper and lower bounds for conductivity as a function of r = k, /k;.
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Fig. 10. For Ni/Al,O3, normalized 3 x bulk modulus (left) and normalized 2 x shear modulus (right) as a function of volume fraction
of A1203.
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Fig. 11. For Ni/Al,O3, normalized conductivity (left) and normalized coefficient of thermal expansion (right) as a function of volume
fraction of Al,Oj;. The estimate for the coefficient of thermal expansion is based on the estimate for the bulk modulus shown in Fig. 10.
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Fig. 12. For Ni/Al,O3, normalized coefficient of thermoelasticity m = 3ka as a function of volume fraction of Al,O;.

Table 4

Properties of Ni and alumina at room temperature
Property at room temperature Alumina Ni
Bulk, x (Pa) 2.62 x 10" 1.66 x 10"
Shear, u (Pa) 1.57 x 10" 7.67 x 10"
Coefficient of thermal expansion, a (K™') 8.8 x 10°° 13.3x10°°
Conductivity, k (Wm™' K1) 3.01 x 10! 9.07 x 10!
Specific heat, ¢ Jkg™' K™') 7.75 x 10? 4.44 x 10?
Density, p (kgm™3) 3.97 x 10° 8.9 x 10

Appendix B. The macroscopically isotropic, plane stress, plane flux case

An important special case is when the forward (direct) problem (P) corresponds to plane stress, plane
flux and the FGM is macroscopically isotropic. The underlying assumption is that the domain corresponds
to, e.g., a thin plate with zero flux and no tractions applied on the top and bottom and all other loads are
applied in the same plane as the plate. It is assumed that the composition of the FGM is the same in the
thickness direction. In that case, observe that M - €* = 3katre* = atre*. For the plane stress case, one has
to specify a stress target that is consistent with the plane stress assumption, i.e., the stress target has to
satisfy 3 =0 for i = 1, 2, 3, where 3 corresponds to the normal of the plane with respect to which the
stresses are assumed to be zero. The adjoint mechanical problem can be taken as a plane stress problem as
well, hence the total adjoint strain component €/, ;; has to accommodate the stress-free top and bottom
surfaces. This is important since the gradient (12) includes contributions from both €33 and € ;; = €33,

where
m
€33 = _/1+2l,ttr€p+}v+2lu(0_ gr)
and
* A * S
=7 ey tr (em,p — & (Ae)p)7

where 4 = k — (2/3)u is the first Lamé modulus, tr is the trace, and the subscript p represents the in-plane
restrictions of the corresponding tensors. In view of (12) and the previous relations, the first term in the

gradient, for the plane stress and isotropic FGM case, can be computed as follows:
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€ [Coe—M,(0-0,)]=¢,- [Cle, — M2 (0 —0,)], (B.1)
where
C’ = (3p)H, +21J,, M’ = (pm)I,, H,= %I,, ®l, J,=1L,—H,. (B.2)

In (B.2), I, and I, are the in-plane restrictions of the second and fourth order (symmetric) identity tensors
respectively and the plane stress factor p is p = 2u/(x + (4/3)u). A relevant consequence of (B.1) and (B.2)
is that for the sensitivity analysis (i.e., local changes in material properties with respect to volume fractions
), the derivatives of the modified bulk modulus 3pk and of the modified thermoelastic modulus pm need to
take into account the derivative of p with respect to w which, in turn, includes derivatives of k and pu.
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